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Soliton-radiation beat analysis
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A technique is introduced which allows us to extract information on the solitonic content from a nonlinear
wave. Its applicability is not as narrowly restricted as that of inverse scattering theory; therefore, it works in
situations that could not be studied before. As an example we identify and demonstrate a higher order

dispersion-managed soliton.
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INTRODUCTION

Solitons and solitary waves are the result of a stable bal-
ance between dispersive (or diffractive) and nonlinear ef-
fects. The fascination of solitons stems from their property to
be “unavoidable:” In any system that can support solitons at
all, an initial condition that does not possess quite the right
shape of a soliton will excite one nevertheless; even when
during propagation the soliton is perturbed, it will heal out
once the perturbation ends. This self-adjusting property
works not only in simplified mathematical models but
equally well in many real-world situations [1]—hence the
considerable appeal for applications. Some of the initial en-
ergy may not go into the soliton but may be radiated off. In
most cases, therefore, a nonlinear wave will contain a soli-
tonic part and radiative background.

We here address the special case of solitons in optical
fiber which take the form of picosecond light pulses traveling
down the fiber [2,4]. Fiber-optic solitons now find entry into
commercial optical telecommunication systems. In this con-
text the radiative part is usually considered as something of a
nuisance and has not been studied in much detail (but see
[5]). The established method to tell radiative background and
one or possibly several solitons apart is the inverse scattering
theory (IST) [6]. Since its inception IST has led to many
groundbreaking insights into nonlinear waves. IST is an ana-
lytical theory, but direct scattering transform, an important
step in IST to find the soliton content, can be performed
numerically for arbitrary initial conditions [7]. Note, how-
ever, that IST is valid only in integrable systems.

Here we introduce a quite different technique serving the
same purpose. It is based entirely on numerical procedures.
This has the obvious drawback that a single run can only
analyze the situation at a particular parameter set, while an
analytical result has the undeniable advantage that it imme-
diately provides information on the scaling of results with
variation of parameters. This consideration is outweighed,
however, by the fact that our method demonstrably works
well in many situations in which IST utterly fails: It is ap-
plicable much more generally, and in many interesting cases
it is the only viable method. Indeed, any situation for which
propagation can be modeled numerically seems to be acces-
sible to our method.
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The crucial insight at the core of our technique is this: The
evolution of a nonlinear wave, unless it happens to be a pure
soliton, looks very complicated due to interference between
the solitonic content and the radiative background. The inter-
ference pattern by necessity contains information on both
constituents, but so far it has never been described how this
wealth of information can be decoded and utilized. This is
exactly what our method accomplishes.

To introduce our method, we first describe its application
to a very simple case which can also be treated analytically.
This allows us to compare the results of our method with
known analytical results. Finally we will proceed to apply
the method to a situation which so far has not been acces-
sible at all: In dispersion-managed fibers the dispersion is
made to alternate between positive and negative; such fibers
are now commercially deployed as a matter of routine. IST is
not applicable to dispersion-managed fibers, but we apply
our method successfully and thus demonstrate its power.
Specifically, we are going to identify a dispersion-managed
(N=2)-soliton, the existence of which so far has been more
or less a matter of conjecture.

THE FUNDAMENTAL SCHRODINGER SOLITON:
ANALYTICALLY KNOWN RESULTS

To start with a simple case which can also be solved ana-
Iytically, we choose here the well known nonlinear
Schrodinger equation (NLSE) without any additional higher
order terms, which describes the change of the pulse field
envelope A(T,z) during propagation in a fiber:
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Here, z is the distance along the fiber, and 7 time in the
comoving frame. The group velocity dispersion parameter 3,
and the nonlinearity coefficient y are constant fiber param-
eters [2]. This equation has, among others, the well-known
solution of the fundamental soliton for 8,<<0,

A(T,z) = \/;sech<1>exp(£7ﬁz> (2)
T 2

where A is related to the peak power P=|A(0,0)[2. Since for
a soliton a dynamic equilibrium between dispersive and non-

linear effects is needed, a constraint links 7}, and f’; it can be
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written as the “condition of constant action:”

Tgﬁ = @ = const. (3)

Y

whereas the energy is

E=2T,P. 4)

To better deal with multiple solitons and various launch
conditions, we now introduce a specific terminology: For all

quantities A, E, T and P we introduce double indices, e.g.,
Ty, etc. The first index denotes the jth soliton (j
=1,2,3,...) because below we will consider the simulta-
neous occurrence of several solitons. N has been called the
“soliton order” [8]; it is a positive real number and serves to

scale the initial condition with respect to the fundamental
soliton. Thus, in the following Ty— T};, A and P from Eq.

(2) become A; and f’“, respectively, and E in Eq. (4) be-
comes Eq;.

Now we choose a simple initial condition, a sech-shaped
unchirped pulse to be launched into the fiber:

N T
A]N(T,O) =N P” Sech<_>. (5)
Ty,

It has the total energy

Ejo =2N’T,Py;. (6)

Launching this pulse will result in the formation of solitons,
each of which must obey Eq. (3):

82|

Tz-foiN = 7 = const. (7)

According to IST the first soliton will be generated above
the threshold value of N =% [8] and will have the energy

Eiy=2T\yPiy= (2N -1)Ey,. (8)
Therefore, the duration and peak power, which have to fulfill
the conditions (7) and (8), are given by

1 A A
TIN:—IT” and P]N:(ZN_l)ZPll‘ (9)

2N -
The propagation of the first soliton can, therefore, be de-
scribed by

An(T,z) = (2N - 1)\/f’—” sech((ZN— 1)Ti>
1

1 A
Xexp(zsy(ZN— 1)2P112>. (10)

PHASE DYNAMICS AND BEAT NOTES

Since we are interested in interference phenomena, the
phase dynamics is most important here. We note from Eq.
(10) that the phase of a soliton evolves at a time-independent
rate proportional to the peak power.
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In contrast, the phase evolution of linear (low power non-
solitonic) waves is quite different. Such low-power waves
are created from the energy that is shed by solitons in the
course of shape readjustment. Their phase is time dependent:
They have a parabolic dispersion relation. Therefore, they
disperse away from the soliton in the course of time. In
the soliton community these waves are, therefore, called
radiation.

Typically, solitonic plus radiative waves will exist in a
fiber simultaneously. They will therefore beat with each
other. The beat pattern is determined chiefly by the phase
evolution of both parts. In a more general case, there can be
a vast variety of soliton-soliton and soliton-radiation interfer-
ence terms. Therefore, we will use bracketed upper indices
for quantities resulting from interference, like a phase differ-
ence Ag'®?), where a and b are either zero when denoting
radiation, or the j value of the involved soliton.

Let us first focus on the interference pattern between the
first soliton and the radiation. The interference pattern should
repeat after a distance L!”) if the phase difference of the two
components

A¢(10) = Ad)IN_ A(ﬁrad
=[p(z+ L") - $(2)]
- |:¢)rad(Z + L(IO)) - ¢rad(z)] (1 1)

equals 27r. Fortunately only the strictly comoving part of the
radiative wave is relevant for the long term interference; its
phase is independent of z, and can be set to zero without loss
of generality. Then, using Egs. (2) and (10),

Y4 Yp
AP0 = ¢z + L19) — p(z) = EPIN(Z +L119) - 5P

~ A |
- %/PINL“O) - %(ZN— 126,119 207 (12)

Now we consider the spatial frequencies of the beat notes,
which are of the type

1
Z=—; 13
3 (13)
we prefer to denote them by capital Z rather than the more
conventional k because we define them as inverse lengths
without a factor of 2.
Specifically, from Eq. (12) we see that here

1 yP
2= = N = 1R = ON= 1 Z. (14)

Here we introduce the spatial frequency of the fundamental
soliton Z:

Py 1
Zsol=y 11=_~ (15)
4ar 820

It is equal to the inverse spatial period of the soliton; the
customary definition of the soliton period z, [2] refers to one
eighth of that distance.
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FIG. 1. Soliton content of the input pulse A(T,0) [Eq. (5)].
Upper part: The energy content of each soliton rises linearly beyond
its threshold at half-integer N (three parallel slanted lines). The sum
is piecewise-linear and approximates the parabola E,xN?
(dashed). Lower part: The difference between piecewise-linear
function and parabola is the radiative energy, shown on an ex-
panded scale. It vanishes at integer N values and has maxima at
half-integer points.

Expressing N through pulse energy, Eq. (14) yields a spa-
tial frequency of the beat between the radiation and the first

soliton
P |E :
Z(10)=u<2 ﬂ_l) (16)
4’77' Ell

or alternatively,

2 2
a0 _ T (2 [ ¥T1HEw 1) . (17)
4|3y 2(,|
These expressions describe the beat spatial frequency in
terms of fiber parameters (7, 8,) and initial pulse parameters

(E, and either T, or P,;). Keep in mind that this is valid

. 2
only for N> % or equivalently E\, > %

EXTENSION TO MULTIPLE SOLITONS

When the input energy is increased beyond what is re-
quired for the first soliton, the fractional energy which goes
into the radiative background will grow. If it reaches a suf-
ficient amount, it can form another soliton.

We illustrate the situation with Fig. 1. Consider N as the
variable to be increased from zero. As soon as N=% is
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reached, a first soliton is generated; its energy increases lin-
early with N from then on. Once N =% is reached, another
soliton is created; again, its energy increases linearly. The
same repeats at every half-integer N. The solitonic energies
thus scale as E|y* (2N—1), E,y> (2N-3), etc.

The sum of the solitonic energies is given by a piecewise-
linear function which is tangent to the parabola E > N? [see
Eq. (6)] whenever N is integer. The difference between the
piecewise-linear solitonic energy and the parabola (total en-
ergy) is the radiative energy, and is shown on an expanded
scale in the lower part of the figure. For integer N (at the
tangent points) the radiative energy vanishes, and all of the
initial energy is invested in solitons.

The figure graphically illustrates the solitonic and radia-
tive content for any N. For example, at N=2 there are two
fundamental solitons with energies E;; and 3E|;.

In correspondence with Eq. (10) we can now write ex-
pressions for the isolated second soliton

~ T
Asn(T,2) =(2N-3)VPy; sech((ZN— 3)T—>
11

1 “
><exp<i57(21v— 3)2P11z), (18)
the third soliton

~ T
A3N(T,Z) = (2N— 5) Pll SeCh((zN_ S)T_)
11

1 a
><exp<i57(2N— 5)2P”z), (19)

etc. Again, in correspondence with Eq. (16) the beat notes
with the radiative background have spatial beat frequencies

£ 2
Z20 = zml(z \/ f - 3) (20)
11
E_ 2
Z(EO)ZZSOI(2 EtOt_S) s (21)
11

etc. Since the interference of soliton and radiation is a non-
linear superposition, the interference pattern is not strictly
sinusoidal. Therefore, higher harmonics of the different A
occur at frequencies [ZV? with [ integer. The first three fre-
quencies and their harmonics up to fifth order are plotted in
Fig. 2.

So far we have discussed beat notes between solitons and
radiative background. However, as soon as there is more than
one soliton, we also need to consider beat notes between the
solitons. The spatial beat frequency between the first and
second soliton can be calculated from Egs. (16) and (20) as
follows:

7U12) _ 7(10) _ #(20)

2 2
E E
:zsol(zw/ﬂ— 1) —zml(z\/ﬂ—3>
Ell Ell
E
=Zsol8< e 1) =8Z(N-1) (22)
11
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FIG. 2. Dependence of the spatial frequencies ZU? of the initial
parameter N. At every half-integer N a set of traces for the corre-
sponding soliton begins, describing the spatial frequency for the
corresponding spectral peak, and its harmonics up to fifth order.

The spatial frequency Z? exists for N>3. At N=2
we recover the well-known soliton frequency Z!'?=8Z,
=1/zy [compare Eq. (15)].

Figure 3 is an extension of Fig. 2, in that a selection of
beat frequencies between solitons has been included. In par-
ticular, note the straight line that branches off from the fun-
damental trace of the first soliton at N=1.5, Z/Z,=4. It
represents the difference between the fundamental of the first
soliton and the fundamental of the second soliton, Z(1?
=719_70 Also note the curves that bend down: They rep-
resent Z(10-27(20)  7(10) _37(20) ot

So far we have rephrased well-known facts in a particular
terminology. In the following paragraph we will benefit from
this terminology when we introduce our method.

NUMERICAL BEAT ANALYSIS: THE PROCEDURE

Propagation of an arbitrary light pulse in optical fiber can
be numerically computed using established methods. In gen-
eral one obtains a complicated interference pattern between
solitons and radiation. Figure 4 shows an example of a com-

7/ Zgol

FIG. 3. Further traces have been added to the analytical beat
note chart of Fig. 2. Here, combination tones between first, second,
and third soliton are shown; in particular, the beat note between the
fundamental frequencies of the first and second soliton is high-
lighted by a bold line. Traces bending down represent difference
frequencies between one soliton and overtones of the next.
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FIG. 4. Example of a complicated beat pattern in both temporal
(top) and spectral (bottom) domain. Here the initial condition
A(T,0) of Eq. (5) with N=2.43 was used.

puted propagation, performed using the split-step Fourier
method [9]. This pattern is the result of beating between
soliton content and radiative waves and must therefore con-
tain information on both. Can useful information on the soli-
ton content be extracted? The answer is in the affirmative.
Treatment of the problem can be simplified if we drasti-
cally reduce the amount of data in the beat pattern to a scalar
evolution series of single quantity. For this quantity several
choices are possible: Peak power, pulse duration, spectral
peak power, or spectral width immediately come to mind.
While any of these is viable, the spectral peak power will
provide the best results. The reason is that as the radiation
disperses away from the soliton in the time domain, the over-
lap between soliton and radiation is reduced. Therefore, the
amplitude of the temporal beat note is soon diminished (see
Fig. 5). On the other hand, in the spectral domain the soliton
as well as the radiation regarded independently will not
change their power spectrum, which leads to a persistent beat
pattern. Therefore, we pick the spectral power at center fre-

quency |A(0,z)|? as the scalar quantity.

The next step is to take the Fourier transform of this quan-
tity to identify the spatial frequency content in the beat pat-
tern. It is sufficient to use only the power spectrum, and
therefore we ignore the phase spectrum. Figure 6 shows the
resulting power spectrum. It contains a multitude of frequen-
cies, which become visible only when the Fourier transform
yields sufficient dynamic range. For this reason we find it
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FIG. 5. Comparison of the evolution of peak power |A(0,z)?,

spectral peak power |A(0,z)[2, full width at half energy Trwpr(z),
and spectral full width at half energy Aw(z). The graph shows the
propagation for N=1.15 over 256 soliton periods. All traces are
normalized to their initial values.

absolutely mandatory here to use a suitable windowing func-
tion for data apodization. The perfect windowing function
would ensure narrow spectral peaks and good suppression of
spurious responses at the same time; in reality there is always
a trade-off [10]. We were successful with either a Blackman-
Harris windowing function

27m
f(m)=0.35875-0.488 29 cos<7>

dm 67mm
+0.141 28 cos —0.011 68 cos
M M
(23)
or a Gaussian
M \2
- —
(m) 2 (24)
=exp| -
Sflm p nY;

In either case, there are M data points, and 1 <m <M. The
Gaussian has the advantage that the windowing strength can
be easily modified by variation of the parameter ¢ according

-100

-120

—140 ¢

5 10 15 2 2 30

Z/Z4y

FIG. 6. Fourier transform of the spectral peak power |g(0,z)|2

obtained from z=0 to z=256z, at N=2.43. Dashed line: Transform

without apodization (rectangular window), solid line: With apodiza-
tion by a Gaussian with ¢=0.12.
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FIG. 7. Numerically evaluated beat note chart for standard fiber.
Horizontal coordinate is soliton order, vertical scale is normalized
spatial frequency. Each vertical line represents one power spectrum
of numerical data. This figure can be directly compared to Fig. 3.
Note the narrow vertical white stripes at integer N.

to the situation at hand. Typically, 0.05=<c¢=<0.25, and ¢
=0.12 is something of a best compromise where the Gauss-
ian acts with similar strength as the Blackmann-Harris func-
tion.

Certainly, the spectrum in Fig. 6 is complicated and seems
difficult to decode. The trick is to extend the picture by an
additional dimension. Consider how a complicated molecular
spectrum is studied by scanning a magnetic field; this causes
Zeeman states to move in characteristic ways so that they can
be identified. Here we scan the initial pulse parameter N. The
retrieved spectra are stacked together in Fig. 7, where the
spectral power is represented as gray scale. All spectral peaks
evolve in characteristic ways with N; the way they depend on
N indicates their nature, and we can identify them. The
reader will notice the close similarity to Fig. 3, which was
based on analytical arguments: There is only a continuum
below N=0.5. At every half-integer N a set of curves begins.
Each set consists of a fundamental spatial frequency trace
and its overtone traces (compare Fig. 2). With increasing N
most spatial frequencies grow.

In contrast to Fig. 3 the traces are interrupted at integer N.
This can be explained easily: The amplitude of a beat note is
proportional to the product of the amplitudes of the two par-
ticipating waves. In the case of a pure radiationless soliton
the radiative wave vanishes (see Fig. 1), and a null in the
corresponding beat amplitude results. Those traces that are
punctuated by nulls can, therefore, be identified as soliton-
radiation beats, the others as soliton-soliton beats. Inciden-
tally, among all beat notes those between the solitons have
the highest amplitude.

As a check on the quantitative consistency between the
analytical results in Fig. 3 and the numerical data in Fig. 7
we rescale the latter so that one would expect the trace for
the fundamental soliton to become a straight line through the
origin. Therefore, in Fig. 8 the horizontal axis is rescaled
from N to (2N—1)? [see Eq. (14)]. The result confirms the
consistency (correct threshold and scaling exponent) and fa-
cilitates identification of the “overtone” of the fundamental
soliton trace.
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FIG. 8. Beat note chart as in Fig. 7, but rescaled to make the first
soliton trace and its overtones straight. The bright stripes now ap-
pear at (2N—1)?=1 and 9, respectively.

APPLICATION TO MORE REALISTIC CASES

It is straightforward to apply the technique to more com-
plex cases in which corrective terms have been added to the
nonlinear Schrddinger equation like, e.g., higher-order dis-
persion, loss, or Raman terms. Indeed, the procedure remains
exactly the same, since it makes no assumptions about inte-
grability. When losses become appreciable over the finite
time interval used for the Fourier transform, the transform
will return broadened spectral lines. For exceedingly strong
losses the Fourier transform does no longer yield meaningful
spectral features. However, that is not a flaw of our method,
but the result of an ill-posed question.

To demonstrate the power of our method, we now proceed
to apply it to a case which can not be treated with conven-
tional methods. A case of considerable current interest is
pulse propagation in a dispersion-managed fiber.

To make a dispersion-managed fiber one typically concat-
enates fibers with different dispersion values so that the dis-
persion parameter 3, periodically alternates between a posi-
tive and a negative value. Therefore, the nonlinear
Schrédinger equation [Eq. (1)] must be modified by replac-
ing B,— B,(z). Such a fiber is characterized by the path-
average dispersion fB,., the period length L, ,,=L"+L", and
the map strength [3]

_ |:8; - lgave|L+ + |B£ - Bave|L_
- ?

where 7 is the pulse duration (full width at half maximum).
S=0 recovers the homogenous case.

After the original idea of dispersion management [11] at-
tempts have been made to mathematically describe the
propagation [12] or the shape [13,14] of the soliton. IST fails
in this situation: B, is a function of z but cannot be
replaced—not even approximately—by B,,.. Whether a vi-
able adaptation of IST will ultimately be found or not, our
method avoids such difficulties because it relies on numeri-
cal propagation which is straightforward.

In real systems it may be difficult to create the required
pulse shape and chirp at the chosen launch point to generate
an ideal dispersion managed soliton. As an initial condition
we here choose a chirp free Gaussian-shaped pulse which is

S

(25)
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FIG. 9. Fourier-transform of the numerical data: The power
spectrum is plotted as a function of the normalized spatial fre-
quency and the soliton order N for a dispersion managed fiber with
S=~1.42. Inset: Enlarged view of traces near N=2, rendered as
shaded contour plot. This makes it easier to read the coordinates of
the minima in two of the traces near N=2.075.

closer to the DM soliton than a sech-shaped pulse [14]:

T

2
A(T,0) =NA(0,0)eXp<— %(T_) ) (26)
1

A(0,0) is the square root of the peak power of a soliton with
S=0. We launch this pulse at a chirp-free point of the disper-
sion map [15] and use §=1.424 and N=1.40. Most of the
power is incorporated into the soliton; only 10~ of the total
launched energy ends up as radiation. Therefore, Eq. (26)
provides a remarkably good approximation to the DM soli-
ton shape. The spatial beat note diagram for this case is
shown in Fig. 9.

The first observation is about the onset of the first soliton.
It is difficult to read precise threshold values because the
traces have a certain width and, at the branching point, are
tangent to each other. In any event, the first soliton branch in
Fig. 9 is shifted to higher N values in comparison to Fig. 7.
Also, the characteristic nulls in the traces, indicative of a
pure soliton, occur not at N=1 but at N= 1.45. This behavior
is well known and is referred to as power enhancement
[16-18].

Figure 9 also shows clearly that at N=1.5 a second soli-
ton sets in. Similar as above, the spectral peak Z(!? then
becomes the most prominent one. A remarkable observation
concerns N=2.075: The amplitude of each soliton-radiation
beat note ZU” goes through a deep minimum, while the
soliton-soliton beats do not. This is a clear signature of a
nearly pure second-order soliton. It has been uncertain to
date whether a second order dispersion managed soliton
(“N=2 DM soliton”) exists, but our method can easily reveal
its existence and determine its parameters. From Fig. 9 we
obtain Z/Z,,=5.68 and 1.73, respectively, at N=2.075. Mak-
ing use of the fact that the nonlinear phase evolution as de-
scribed by the phase term in Eq. (2) is not affected by dis-
persive effects, this translates into a ratio of peak powers of
the two individual solitons of 3.3 : 1 (compare the homog-
enous case with 9 : 1). With this information we plot the pure
N=2 DM soliton in Fig. 10.
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FIG. 10. A pure second-order dispersion managed soliton dis-
covered with the new method. Parameters can be read from inset of
Fig. 9; see text.

DISCUSSION

We introduce a technique that permits the evaluation of
the soliton content in a complex nonlinear wave. Since the
starting point of the method is a numerical simulation it is
nearly universally applicable.

However, it requires a certain finite sample length as a
basis for the Fourier transform. A long sample affords better
spectral resolution, which may be desirable for elevated N
values where a multitude of beat notes becomes increasingly
difficult to identify. The use of extended samples is uncritical
for a stationary case. In contrast, in the presence of gradual
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changes of soliton content, e.g., due to energy loss, choice of
sample length involves a trade-off between conflicting re-
quirements: A long sample suffers more from the gradual
change, and one must balance uncertainties in position and
spatial frequency.

IST makes stationarity a precondition, and thus there is no
such spatial uncertainty. As a result, IST immediately pro-
vides soliton parameters for all z up to . Our method is not
subject to such preconditions. The price to pay is that (1)
information obtained is only valid for the finite spatial inter-
val under consideration (but this is a consequence of the
nonstationarity of the problem, not of the technique), and (2)
the user must make a meaningful choice of the sample
length. It is a matter of future considerations whether in criti-
cal cases wavelet transforms may provide improvements.

IST also provides velocity of the solitons. We found an
extension of the method presented here that allows the same
information to be extracted; however, a discussion must be
the subject of a forthcoming publication.

Our technique is most valuable in situations where there
are no other techniques available. As an example, we have
identified a dispersion-managed higher-order soliton; even
the existence of this soliton was uncertain before. It is prob-
able that our technique can also be extended to other nonlin-
ear wave equations, like Korteweg-de Vries, etc.
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